高等数学公式汇总

等价无穷小

sinxtanxarcsinxarctanxln(1+x)ex1xxsinx16x3xarcsinx16x3xtanx13x3xarctanx13x31cosx12x21cosaxa2x2ax1xlna(1+x)a1ax\begin{aligned} & \large \sin{x} \sim \tan{x} \sim \arcsin{x} \sim \arctan{x} \sim \ln(1+x) \sim \text{e}^x-1 \sim x \\ & \large x-\sin{x} \sim \frac{1}{6}x^3 \quad\quad\quad\quad x-\arcsin{x} \sim -\frac{1}{6}x^3 \\ & \large x-\tan{x} \sim -\frac{1}{3}x^3 \quad\quad\quad\quad x-\arctan{x} \sim -\frac{1}{3}x^3 \\ & \large 1-\cos{x} \sim \frac{1}{2}x^2 \quad\quad\quad\quad 1-\cos^ax \sim \frac{a}{2}x^2 \\ & \large a^x-1 \sim x\ln a \quad\quad\quad\quad (1+x)^a-1 \sim ax \\ \end{aligned}

泰勒公式

sinx=xx33!+o(x3)arcsinx=x+x33!+o(x3)tanx=x+x33+o(x3)arctanx=xx33+o(x3)cosx=1x22!+x44!+o(x4)(1+x)α=1+αx+α(α1)2!x2+o(x2)ex=1+x+x22!+x33!+o(x3)ln(1+x)=xx22+x33+o(x3)\begin{aligned} & \large \sin{x}=x-\frac{x^3}{3!}+o(x^3)\quad\quad\quad\quad \arcsin{x}=x+\frac{x^3}{3!}+o(x^3)\\ & \large \tan{x}=x+\frac{x^3}{3}+o(x^3) \quad\quad\quad\quad \arctan{x}=x-\frac{x^3}{3}+o(x^3) \\ & \large \cos{x}=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4) \\ & \large (1+x)^\alpha=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+o(x^2)\\ & \large \text{e}^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3)\\ & \large \ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3)\\ \end{aligned}

基本求导公式

(xa)=axa1,(x)=12x,(1x)=1x2 (ax)=axlna,(ex)=ex (logax)=1xlna,(lnx)=1x (sinx)=cosx,(cosx)=sinx,(tanx)=sec2x (cotx)=csc2x,(secx)=secxtanx,(cscx)=cscxcotx (arcsinx)=11x2,(arccosx)=11x2 (arctanx)=11+x2,(arccotx)=11+x2\newcommand{\arccot}{\mathrm{arccot}\,} \begin{aligned} & \large (x^a)'=ax^{a-1} \quad,\quad (\sqrt{x})' = \frac{1}{2\sqrt{x}} \quad,\quad (\frac{1}{x})' = -\frac{1}{x^2}\\ ~\\ & \large (a^x)'=a^x\ln{a} \quad,\quad (e^x)'=e^x \\ ~\\ & \large (\log_ax)'=\frac{1}{xlna} \quad,\quad (\ln{x})'=\frac{1}{x} \\ ~\\ & \large (\sin{x})' = \cos{x} \quad,\quad (\cos{x})'=-\sin{x} \quad,\quad (\tan{x})'=\sec^2{x}\\~\\ & \large (\cot{x})' = -\csc^2{x} \quad,\quad (\sec{x})'=\sec{x}\tan{x} \quad,\quad (\csc{x})'=-\csc{x}\cot{x}\\ ~\\ & \large (\arcsin{x})'=\frac{1}{\sqrt{1-x^2}} \quad,\quad (\arccos{x})'=-\frac{1}{\sqrt{1-x^2}}\\ ~\\ & \large (\arctan{x})'=\frac{1}{1+x^2} \quad,\quad (\arccot{x})'=-\frac{1}{1+x^2} \end{aligned}

麦克劳林级数

ex=1+x+x22++xnn!+o(xn) sinx=xx33!++(1)n(2n+1)!x2n+1+o(x2n+1) cosx=1x22!++(1)n(2n)!x2n+o(x2n) 11x=1+x+x2++xn+o(xn) 11+x=1x+x2+(1)nxn+o(xn) ln(1+x)=xx22+x33+(1)n1nxn+o(xn) (1+x)a=1+ax+a(a1)2!x2++a(a1)(an+1)n!xn+o(xn) arctanx=xx33+x55+(1)n2n+1x2n+1+o(x2n+1)\begin{aligned} & \large \text{e}^x =1+x+\frac{x^2}{2}+\cdots+\frac{x^n}{n!}+o(x^n)\\ ~\\ & \large \sin{x}=x-\frac{x^3}{3!}+\cdots+\frac{(-1)^n}{(2n+1)!}x^{2n+1}+o(x^{2n+1})\\ ~\\ & \large \cos{x}=1-\frac{x^2}{2!}+\cdots+\frac{(-1)^n}{(2n)!}x^{2n}+o(x^{2n})\\ ~\\ & \large \frac{1}{1-x}=1+x+x^2+\cdots+x^n+o(x^n)\\ ~\\ & \large \frac{1}{1+x}=1-x+x^2-\cdots+(-1)^nx^n+o(x^n)\\ ~\\ & \large \ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots+\frac{(-1)^{n-1}}{n}x^n+o(x^n) \\ ~\\ & \large (1+x)^a=1+ax+\frac{a(a-1)}{2!}x^2+\cdots+\frac{a(a-1)\cdots(a-n+1)}{n!}x^n+o(x^n)\\ ~\\ & \large \arctan{x}=x-\frac{x^3}{3}+\frac{x^5}{5}-\cdots+\frac{(-1)^n}{2n+1}x^{2n+1}+o(x^{2n+1}) \end{aligned}

不定积分基本公式

xadx=1a+1xa+1+C,1xdx=lnx+C axdx=axlna+C,exdx=ex+C sinxdx=cosx+C,cosxdx=sinx+C tanxdx=lncosx+C,cotxdx=lnsinx+C secxdx=lnsecx+tanx+C,cscxdx=lncscxcotx+C sec2xdx=tanx+C,csc2xdx=cotx+C secxtanx=secx+C,cscxcotxdx=cscx+C 11x2dx=arcsinx+C,1a2x2dx=arcsinxa+C 11+x2dx=arctanx+C,1a2+x2dx=1aarctanxa+C 1x2a2dx=12alnxax+a+C,1a2x2dx=12alna+xax+C 1x2+a2dx=ln(x+x2+a2)+C 1x2a2dx=lnx+x2a2+C a2x2dx=a22arcsinxa+x2a2x2+C\begin{aligned} & \large \int x^a dx = \frac{1}{a+1}x^{a+1}+C \quad,\quad \int \frac{1}{x}dx = \ln|x|+C \\ ~\\ & \large \int a^x dx = \frac{a^x}{\ln{a}}+C \quad,\quad \int \text{e}^x dx = \text{e}^x+C\\~\\ & \large \int \sin{x}dx=-\cos{x}+C\quad,\quad \int \cos{x}dx=\sin{x}+C \\ ~\\ & \large \int \tan{x}dx=-\ln|\cos{x}|+C \quad,\quad \int \cot{x}dx=\ln|\sin{x}|+C\\ ~\\ & \large \int \sec{x}dx = \ln|\sec{x}+\tan{x}|+C \quad,\quad \int \csc{x}dx=\ln|\csc{x}-\cot{x}|+C \\ ~\\ & \large \int \sec^2{x}dx=\tan{x}+C \quad,\quad \int \csc^2{x}dx=-\cot{x}+C \\ ~\\ & \large \int \sec{x}\tan{x}=\sec{x}+C \quad,\quad \int \csc{x}\cot{x}dx=-\csc{x}+C \\ ~\\ & \large \int \frac{1}{\sqrt{1-x^2}}dx=\arcsin{x}+C\quad,\quad \int \frac{1}{\sqrt{a^2-x^2}}dx=\arcsin{\frac{x}{a}}+C \\ ~\\ & \large \int \frac{1}{1+x^2}dx=\arctan{x}+C \quad,\quad \int \frac{1}{a^2+x^2}dx=\frac{1}{a}\arctan{\frac{x}{a}}+C \\ ~\\ & \large \int \frac{1}{x^2-a^2}dx=\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C \quad,\quad \int \frac{1}{a^2-x^2}dx=\frac{1}{2a}\ln|\frac{a+x}{a-x}|+C \\ ~\\ & \large \int \frac{1}{\sqrt{x^2+a^2}}dx=\ln(x+\sqrt{x^2+a^2})+C \\ ~\\ & \large \int \frac{1}{\sqrt{x^2-a^2}}dx=\ln|x+\sqrt{x^2-a^2}|+C \\ ~\\ & \large \int \sqrt{a^2-x^2}dx = \frac{a^2}{2}\arcsin{\frac{x}{a}}+\frac{x}{2}\sqrt{a^2-x^2}+C \end{aligned}

定积分特殊性质

  设f(x)[0,1]上连续,则

(1)0π2f(sinx)dx=0π2f(cosx)dx (2)In=0π2sinnxdx=0π2cosnxdx In=n1nIn2,I1=1,I0=π2 (3)0πf(sinx)dx=20π2f(sinx)dx (4)0πxf(sinx)dx=π20πf(sinx)dx=π0π2f(sinx)dx (5)02πf(sinx)dx=40π2f(sinx)dx 02πf(cosx)dx=40π2f(cosx)dx \begin{aligned} & \large (1)\quad \int_0^\frac{\pi}{2}f(sinx)dx=\int_0^\frac{\pi}{2}f(cosx)dx \\ ~\\ & \large (2)\quad \large I_n=\int_0^\frac{\pi}{2}\sin^{n}{x}dx=\int_0^\frac{\pi}{2}\cos^{n}{x}dx \\ ~\\ & \large I_n=\frac{n-1}{n}I_{n-2} \quad,\quad I_1=1 \quad,\quad I_0=\frac{\pi}{2} \\ ~\\ & \large (3)\quad \int_0^\pi f(sinx)dx=2\int_0^\frac{\pi}{2}f(sinx)dx \\ ~\\ & \large (4)\quad \int_0^\pi xf(sinx)dx=\frac{\pi}{2}\int_0^\pi f(sinx)dx=\pi\int_0^\frac{\pi}{2}f(sinx)dx \\ ~\\ & \large (5)\quad \int_0^{2\pi} f(\vert{sinx}\vert)dx=4\int_0^\frac{\pi}{2} f(sinx)dx \\ ~\\ & \large \int_0^{2\pi} f(\vert{cosx}\vert)dx=4\int_0^\frac{\pi}{2} f(cosx)dx \\ ~\\ \end{aligned}

  设f(x)是以T为周期的连续函数

(1)aa+Tf(x)dx=0Tf(x)dx (2)0nTf(x)dx=n0Tf(x)dx \begin{aligned} & \large (1)\quad \int_a^{a+T}f(x)dx=\int_0^{T}f(x)dx \\ ~\\ & \large (2)\quad \int_0^{nT}f(x)dx=n\int_0^{T}f(x)dx \\ ~\\ \end{aligned}

  其他性质

(1)0aa2x2dx=π4a2 (2)\begin{aligned} & \large (1)\quad \int_0^a \sqrt{a^2-x^2}dx=\frac{\pi}{4}a^2 \\ ~\\ & \large (2) \end{aligned}

定积分的几何应用

面积

  设D由曲线y=f(x)y=g(x)x=ax=b围成,则D的面积为

A=abf(x)g(x)dx\large A=\int_a^b\vert{f(x)-g(x)}\vert dx

  设D由r=r(θ)(αθβ)\large r=r(θ)(\alpha\leq\theta\leq\beta)围成,则D的面积为

A=12αβr2(θ)dθ\large A=\frac{1}{2}\int_\alpha^\beta r^2(\theta) d\theta

  设D由r=r1(θ),r=r2(θ)(r1(θ)r2(θ),αθβ)\large r=r_1(θ),r=r_2(θ)(r_1(θ) \leq r_2(θ),\alpha\leq\theta\leq\beta)围成,则D的面积为

A=12αβ[r22(θ)r12(θ)]dθ\large A=\frac{1}{2}\int_\alpha^\beta[r_2^2(\theta)-r_1^2(\theta)]d\theta

  设L:y=f(x)(axb)\large L:y=f(x)(a\leq x\leq b),则L绕x轴旋转所得旋转体侧面积为

A=2πabf(x)1+f2(x)dx\large A=2\pi\int_a^b \vert{f(x)}\vert\cdot\sqrt{1+f'^2(x)}dx

  若L:{x=φ(x),y=ψ(x),(αtβ)\large L:\begin{cases} x=\varphi(x),\\ y=\psi(x), \end{cases} (\alpha\leq t\leq\beta),则L绕x轴旋转所得侧面积为

A=2παβψ(t)φ2(t)+ψ2(t)dt\large A=2\pi\int_\alpha^\beta \vert{\psi(t)}\vert \cdot\sqrt{\varphi'^2(t)+\psi'^2(t)}dt

体积

  设L:y=f(x)(axb)\large L:y=f(x)(a\leq x\leq b),则L与x轴围成的图形绕x轴旋转一周所得旋转体的体积为

Vx=πabf2(x)dx\large V_x=\pi\int_a^bf^2(x)dx

  设L:y=f(x)(axb)(ab0)\large L:y=f(x)(a\leq x\leq b)(ab\geq0),则L与x轴围成的图形绕y轴旋转一周所得体积为

Vy=2πabxf(x)dx\large V_y=2\pi\int_a^b\vert{x}\vert\cdot\vert{f(x)}\vert dx

曲线长度

  设L:y=f(x)(axb)\large L:y=f(x)(a\leq x\leq b),则曲线L的长度为l=ab1+f2(x)dx\large l=\int_a^b \sqrt{1+f'^2(x)}dx

  设L:{x=φ(x),y=ψ(x),(αtβ)\large L:\begin{cases} x=\varphi(x),\\ y=\psi(x), \end{cases} (\alpha\leq t\leq\beta),则曲线L的长度为A=αβφ2(t)+ψ2(t)dt\large A=\int_\alpha^\beta \sqrt{\varphi'^2(t)+\psi'^2(t)}dt

  设r=r(θ)(αθβ)\large r=r(θ)(\alpha\leq\theta\leq\beta),则曲线L的长度为l=αβr2(θ)r2(θ)dθ\large l=\int_\alpha^\beta\sqrt{r^2(\theta)-r'^2(\theta)}d\theta

微分方程常见形式

可分离变量

  --------略

齐次微分方程

  形式:f(x,y)=φ(yx)\large f(x,y)=\varphi(\frac{y}{x})

  解法:令yx=u, dydx=u+xdudx\large \frac{y}{x}=u,\ \frac{dy}{dx}=u+x \frac{du}{dx}

一阶齐次线性微分方程

  形式:dydx+P(x)y=0\large \frac{dy}{dx}+P(x)y=0y+P(x)y=0\large y'+P(x)y=0

  解法:通解公式:y=CeP(x)dx\large y=Ce^{-\int P(x)dx}

一阶非齐次线性微分方程

  形式:dydx+P(x)y=Q(x)\large \frac{dy}{dx}+P(x)y=Q(x)y+P(x)y=Q(x)\large y'+P(x)y=Q(x)

  解法:通解公式:y=[Q(x)eP(x)dxdx+C]eP(x)dx\large y=[\int{Q(x)e^{\int P(x)dx}dx+C}]\cdot e^{-\int P(x)dx}

可降阶的高阶微分方程

  形式:y(n)=f(x)\large y^{(n)}=f(x)

  解法:略


  形式:f(x,y,y)=0\large f(x,y',y'')=0(缺y\large y

  解法:令y=p, y=dpdx\large y'=p,\ y''=\frac{dp}{dx}


  形式:f(y,y,y)=0\large f(y,y',y'')=0(缺xx

  解法:令y=p, y=pdpdy\large y'=p,\ y''=p\frac{dp}{dy}

二阶常系数齐次线性微分方程

  形式:y+py+qy=0\large y''+py'+qy=0\quad(pp,qq为常数)

  解法:取特征方程λ2+pλ+q=0,Δ=p24q\large \lambda^2+p\lambda+q=0,\quad \varDelta=p^2-4q

    若Δ>0(λ1λ2)\large \varDelta>0(\lambda_1\neq\lambda_2)

    通解公式:y=C1eλ1x+C2eλ2x\large y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}


    若Δ=0(λ1=λ2)\large \varDelta=0(\lambda_1=\lambda_2)

    通解公式:y=(C1+C2x)eλ1x\large y=(C_1+C_2x)e^{\lambda_1x}


    若Δ<0(λ1,2=α±iβ)\large \varDelta<0(\lambda_{1,2}=\alpha\pm i\beta)

    通解公式:y=eαx(C1cosx+C2sinx)\large y=e^{\alpha x}(C_1\cos{x}+C_2\sin{x})

二阶常系数非齐次线性微分方程

  形式:y+py+qy=f(x)\large y''+py'+qy=f(x)\quad(pp,qq为常数)

  解法:二阶齐次通解+二阶非齐次特解

待续

作者

OKC

发布于

2021-03-30

更新于

2021-09-06

许可协议

评论