行列式
∣AT∣=∣A∣;∣kA∣=kn∣A∣;∣AB∣=∣A∣∣B∣;∣A∗∣=∣A∣n−1;∣A−1∣=∣A∣−1=∣A∣1;A∼B⟶∣A∣=∣B∣.
矩阵
转置矩阵
(AT)T=A;(A+B)T=AT+BT;(kA)T=kAT;(AB)T=BTAT.
逆矩阵
(A−1)−1=A;(kA)−1=k1A−1;(AB)−1=B−1A−1;(An)−1=(A−1)n;(A−1)T=(AT)−1;A−1=∣A∣1A∗.
伴随矩阵
AA∗=A∗A=∣A∣E;A∗=∣A∣A−1;∣A∗∣=∣A∣n−1;(A∗)−1=(A−1)∗=∣A∣1A;(A∗)T=(AT)∗;(kA)∗=kn−1A∗;(A∗)∗=∣A∣n−2A;r(A∗)=⎩⎪⎪⎨⎪⎪⎧n,若r(A)=n,1,若r(A)=n−1,0,若r(A)<n−1.
矩阵的秩
r(A)=r(AT)=r(AAT)=r(ATA);r(A+B)⩽r(A)+r(B);r(AB)⩽min{r(A),r(B)};若P、Q可逆,r(A)=r(PA)=r(AQ)=r(PAQ);若不可逆,r(AQ)<r(A);若A为m×n矩阵,B为n×s矩阵,且AB=O,则r(A)+r(B)⩽n.
相关性无关性
A=(α1,α2,……,αm)向量组A线性相关⟺{