线性代数公式汇总

行列式

AT=A;kA=knA;AB=AB;A=An1;A1=A1=1A;ABA=B.\begin{aligned} & \large |A^T|=|A|; \quad\quad\quad\quad |kA|=k^n|A|;\\ & \large |AB|=|A||B|; \quad\quad\quad\quad |A^*|=|A|^{n-1};\\ & \large |A^{-1}|=|A|^{-1}=\frac{1}{|A|}; \quad\quad\quad\quad A\sim B \longrightarrow |A|=|B|.\\ \end{aligned}

矩阵

转置矩阵

(AT)T=A;(A+B)T=AT+BT;(kA)T=kAT;(AB)T=BTAT.\begin{aligned} & \large (A^T)^T=A; \quad\quad\quad\quad (A+B)^T=A^T+B^T; \\ & \large (kA)^T=kA^T; \quad\quad\quad\quad (AB)^T=B^TA^T.\\ \end{aligned}

逆矩阵

(A1)1=A;(kA)1=1kA1;(AB)1=B1A1;(An)1=(A1)n;(A1)T=(AT)1;A1=1AA.\begin{aligned} & \large (A^{-1})^{-1}=A; \quad\quad\quad\quad (kA)^{-1}=\frac{1}{k}A^{-1};\\ & \large (AB)^{-1}=B^{-1}A^{-1}; \quad\quad\quad\quad (A^n)^{-1}=(A^{-1})^n;\\ & \large (A^{-1})^T=(A^T)^{-1}; \quad\quad\quad\quad A^{-1}=\frac{1}{|A|}A^*.\\ \end{aligned}

伴随矩阵

AA=AA=AE;A=AA1;A=An1;(A)1=(A1)=1AA;(A)T=(AT);(kA)=kn1A;(A)=An2A;r(A)={n,r(A)=n,1,r(A)=n1,0,r(A)<n1.\begin{aligned} & \large AA^*=A^*A=|A|E; \quad\quad\quad\quad A^*=|A|A^{-1};\\ & \large |A^*|=|A|^{n-1}; \quad\quad\quad\quad (A^*){-1}=(A^{-1})^*=\frac{1}{|A|}A;\\ & \large (A^*)^T=(A^T)^*; \quad\quad\quad\quad (kA)^*=k^{n-1}A^*;\\ & \large (A^*)^*=|A|^{n-2}A;\\ \\ & \large r(A^*)= \begin{cases} n, \quad 若r(A)=n, \\ 1, \quad 若r(A)=n-1,\\ 0, \quad 若r(A)<n-1. \end{cases} \end{aligned}

矩阵的秩

r(A)=r(AT)=r(AAT)=r(ATA);r(A+B)r(A)+r(B);r(AB)min{r(A),r(B)};PQr(A)=r(PA)=r(AQ)=r(PAQ);r(AQ)<r(A);Am×nBn×sAB=Or(A)+r(B)n.\begin{aligned} & \large r(A)=r(A^T)=r(AA^T)=r(A^TA);\\ & \large r(A+B)\leqslant r(A)+r(B); \quad\quad\quad\quad r(AB)\leqslant min\{r(A),r(B)\};\\ & \large 若P、Q可逆,r(A)=r(PA)=r(AQ)=r(PAQ);\quad若不可逆,r(AQ)<r(A);\\ & \large 若A为m\times n矩阵,B为n\times s矩阵,且AB=O,则r(A)+r(B)\leqslant n.\\ \end{aligned}

相关性无关性

A=(α1,α2,,αm)A线{\begin{aligned} & \large A=(\alpha_1,\alpha_2,……,\alpha_m)\\ & \large 向量组A线性相关\Longleftrightarrow \begin{cases} \end{cases} \end{aligned}

作者

OKC

发布于

2021-09-06

更新于

2021-09-07

许可协议

评论